CT - suplement

http://www.impactscan.org/slides/xrayct/sld010.htm

In Practice

BSc Biomedical Science

Principles of tomographic imaging

 Use series of 2D views of an object to calculate its shape in the 3rd dimension

Planar x-ray

Sinogram

Reconstructed image

Principles of tomographic imaging

 Use series of 2D views of an object to calculate its shape in the 3rd dimension

Planar x-ray

Sinogram

Reconstructed image

Data acquisition

What are we measuring?

 Measuring linear attenuation coefficient, µ, between tube and detectors

 Attenuation coefficient is a measure of how rapidly x-rays are absorbed within material

Projections

2D views - 'projections' at angles all the way

round the patient

rotate tube and detectors around patient

- sample µ at each detector for each rotation angle
- generate series of projections

Back Projection

Filtered back projection

- Back projection produces blurred trans-axial images
- Projection data needs to be filtered before reconstruction
- Different filters can be applied for different diagnostic purposes
 - Smoother filters for viewing soft tissue
 - Sharp filters for high resolution imaging
- Back projection process same as before

Filtered back projection

BSc Biomedical Science

Filtered back projection

CT number scale

- Grey levels on CT image represent attenuation in each pixel
- Grey levels expressed in Hounsfield units (HU)
 - Water is 0 HU
 - Air is -1000 HU
 - Bone is 1000 3000 HU

• HU =
$$\mu_{\text{object}} - \mu_{\text{water}} \times 1000$$

CT number window

 CT images can be displayed with arbitrary brightness and contrast

Display is defined using window level (WL) and window width (WW)

- WL is CT number of mid-grey
- WW is number of
 HU from black -> white
- Choice of WWV and WL dictated by clinical need

CT Number Window

Same image data at different WL and WWV

Radiation Dose

- CT scanning is a relatively high dose technique
- 1989, NRPB (UK), survey
 - 2% of examinations
 - 20% of total patient dose
- 1999, NRPB (UK), estimate
 - 4% of examinations
 - 40% of total patient dose
- Care is needed
 - in referrals
 - in examination technique

Exam	Dose (mSv)
CT Chest	5
Planar PA Chest	0.02

CTDI

- Dose in CT is highly localised
 - Typical beam width 5-20mm, compared to 250 500 mm in general x-ray
- CTDI Computed Tomography Dose Index
 - Measure of radiation dose within slice width
 - Measured using ionisation chamber, or TLD chips

CTDI (2)

- CTDI can be measured in air, or more commonly in standard Perspex phantoms
 - Head 16 cm diameter, 14 cm long
 - Body 32 cm diameter, 14 cm long

Weighted CTDI

- Weighted CTDI (CTDI_w) is approximation to average dose in Perspex phantom
- CTDIw = 1/3 CTDI_{Centre} + 2/3 CTDI_{Periphery}
- CTDlw values from different scanners and scan protocols can be compared as rough guide to patient dose

Local, organ and effective doses

- Can use more precise methods of dose evaluation to patient
- Examine doses to individual areas and organs in patient
- Combine with knowledge of sensitivity of organs to radiation can calculate effective dose - related to risk from radiation

Multi-slice CT

- · Multi slice detectors
- Advantages of MS CT
- Clinical advantages

Multi-slice CT

- · Multi slice detectors
 - introduced 1998
 - allow acquisition of multiple slices in a single rotation

Advantages of MS CT

- Advantages of multi-slice over single-slice
 - Same acquisition in shorter time or
 - Thin slices give better z-axis resolution or
 - Scan larger volumes in the same time

Clinical Advantages

Continued:

- Angiography: fast scanning ensures best use of contrast.
 Good z-axis resolution allows imaging of narrow vessels
- 3D imaging: large numbers of narrow slices can provide high quality volume rendering
- Cardiac imaging: fast scans allow reduced cardiac blurring in images

Koniec CT - suplement