Magnetyczny rezonans jądrowy- subtelna technika obrazowania struktur obiektów biologicznych

Bolesław AUGUSTYNIAK Politechnika Gdańska

Dlaczego chcemy 'zobaczyć' to, co jest w środku ?

- POZNAĆ STRUKTURĘ
- DIAGNOZOWAĆ PRZYCZYNĘ CHOROBY
 - Jak to zrobić ?
 - W SPOSÓB NIENISZCZĄCY
 - SZYBKO
 - SKUTECZNIE

Wykorzystywane zjawiska fizyczne

- 1. rozpływ prądów (elektro-impedancja)
- 2. promienie X
- magnetyczny rezonans jądrowy (NMR)

WSPÓLNY MIANOWNIK – ? TECHNIKI ELEKTROMAGNETYCZE

Zakresy fal EM stosownych w diagnostyce medycznej

Magnetyczny rezonans jądrowy (NMR)

Historia NMR

1946 zjawisko rezonansu jądrowego - Bloch i Purcell

- 1952 nagroda Nobla Bloch i Purcell
- 1950 NMR jako metoda analizy chemicznej
- 1973 obrazowanie back-projection -- Lauterbur
- 1975 obrazowanie z wykorzystaniem FT Ernst
- 1977 obrazowanie echo-planar Mansfield
- 1980 FT MRI pokazana Edelstein
- 1987 MR angiografia Dumoulin
- 1991 nagroda Nobla Ernst
- 2003 nagroda Nobla Lauterbur i Mansfield

Historia NMR nobliści

Felix. Bloch Edward Purcell

1952 fizyka

rozwój nowych precyzyjnych metod pomiarów magnetyzmu jądrowego

2003 medycyna

odkrycia dotyczące obrazowania za pomocą rezonansu magnetycznego

Richard R. Ernst

1991 chemia

wkład do rozwoju

metodologii NMR o

Paul C. Lauterbur Sir Peter Mansfield

Podstawy fizyczne NMR

- Momenty magnetyczne
- Pomiary czasów relaksacji

Momenty magnetyczne jąder w stałym polu B

Częstość precesji Larmora

 $\omega = \gamma B$

B = 0B >0 W

Dla wodoru: f_L [MHz] = 42,6 Bo [T]

'dostępne' precesje

cząstka	Spin	ω_{Larmor}/B s ⁻¹ T ⁻¹	v/B	
elektron	1/2	1.7608 x 10 ¹¹	28.025 GHz/T	
proton	1/2	2.6753 x 10 ⁸	42.5781 MHz/T	
deuteron	1	0.4107 x 10 ⁸	6.5357 MHz/T	
neutron	1/2	1.8326 x 10 ⁸	29.1667 MHz/T	
²³ Na	3/2	0.7076 x 10 ⁸	11.2618 MHz/T	
³¹ P	1/2	1.0829 x 10 ⁸	17.2349 MHz/T	
^{14}N	1	0.1935 x 10 ⁸	3.08 MHz/T	
¹³ C	1/2	0.6729 x 10 ⁸	10.71 MHz/T	
¹⁹ F	1/2	2.518 x 10 ⁸	40.08 MHz/T	

Koncentracja jąder wodoru w tkankach

Momenty magnetyczne jąder a pole magnetyczne zmienne

Impuls RF o czasie τ i f_L

Pole B₁ impulsu jest prostopadłe do B_o

Powstaje składowa M_T (wirująca)

Impuls RF 90° i 180°

Relaksacja namagnesowania po wyłączeniu impulsu 90°

Powrót M do kierunku równoległego do B_o

Relaksacja składowej poprzecznej –> utrata koherencji

Czasy relaksacji T₁ i T₂ dla tkanek

Metodyka pomiaru czasu T₁

Tkanki A i B różnią się czasem T₁

Drugi impuls 90^o doprowadza M do stanu M_T -> próbkowanie szybkości 'powrotu' M_L

Metodyka pomiaru czasu T₂

Metoda echa spinowego SE

po czasie ¹/₂ TE ponowne zfazowanie ---> echo FID

Układ blokowy aparatu NMR

NS – magnes główny, A – cewka nadawczo-odbiorcza, U – komutator,
 G – nadajnik, R – odbiornik, K – układ sterowania i analizy sygnałów

Jak rozróżnić tkanki i jak je zobaczyć?

- Identyfikacja rodzaju tkanki
- Obrazowanie przestrzenne

Różnicowanie tkanek

- poprzez dobór odstępu między impulsami RF czas repetycji TR
- poprzez dobór odstępu między impulsami 180° czas TE

Repetycja impulsów a sygnał wyjściowy

Wpływ TR i TE na echo

- P tkanki o długich $T_1 i T_2$ (płyn rdz. mózgowy)
- B tkanki o krótszych $T_1 i T_2$ (istota biała)

Wpływ doboru TR i TE na echo - 2

Lp	TR	TE	Typ obrazu
	[ms]	[ms]	kolejność intensywności
а	pośredni długi	Długi	od T2
	1000-2000	100	płyn rm. > istota szara >istota biała
b	krótki-pośredni	Krótki	od T1
	200-1000	<30	istota biała > istota szara > płyn rm.
С	Długi	Krótki	od p
	2000	<30	istota szara > istota biała > płyn r.–m.

Wpływ TR i TE na obrazy NMR

a) 22 cm FOV, 5 mm Thk, SE, TR/TE = 5500/105 ms, 512x256 **b)** 22 cm FOV, 5 mm Thk, SE, TR/TE = 450/14 ms, 256x192

NMR – metody obrazowania

Jak stworzono OBRAZ tkanek ?

- Wpływ gradientu pola B na echo
- Wybór warstwy przecięcia
- Lokalizacja elementu w warstwie

Wpływ gradientu pola B na sygnał FID

u i

Wybór warstwy wzdłuż osi z

Wybór elementu (x,y) w warstwie a) metoda projekcji zwrotnej

A zastosowanie gradientów pola dla kierunku *x* oraz dla kierunku *y* dla kodowania położenia ze zmiany częstości

B FF dla FID

≫

C Dekodowanie położenia z widma FT – tworzenie obrazu

Wybór elementu (x,y) w warstwie

b) metoda <u>kodowania</u> fazy i częstości **2D-FT**

- gradient w x kodowanie fazy FID
- 2) Impuls TE/2 'odwracający' fazy
- gradient w y podczas wystąpienia echa kodowanie częstości FID

Dekodowanie fazy i częstości

Obrazy NMR

Obrazy NMR -2

Kręgosłup

Obrazy NMR -3

Zobaczyć w kolorach

wykorzystać T1, T2 i gęstość ρ protonów

c.d.

<u>edu/-nsl/Lectures/mphysics/Me</u> Part II. Physics of Diagnostic and <u>ystems/Chapter 8. Diagnostic</u> Physics of nuclear magnetic MR//Physics of nuc

Zasady bezpieczeństwa dla NMR

Dopuszczalne warunki badania

Instytucja	B[T]	dB/dt	En. absorbowana średnio całe ciało tkanki
Nationl Center for Devices and Radiol. Health, 1982	2	3 [T/s]	0,4 W/kg 2 W/kg
National Radiation Protection Board, 1983	2,5	20 [T/s] (10 ms)	0,4 W/kg 4 W/kg
Federal Health Office 1984	2,0	Indukowany prąd < 30 mA/m ²	1 W/kg 5 W/kg

Podsumowanie 3 technik

- Przedstawiono trzy techniki określone wspólnym mianem 'elektromagnetyczne'.
- Wykorzystano bardzo różne zjawiska fizyczne.
 Wszystkie te zjawiska dotyczą jednak oddziaływania pola elektrycznego i magnetycznego na jądra lub elektrony.
- Elektromagnetyczne techniki obrazowania struktur obiektów biologicznych mają pond 100 lat i są w ciągłym i dynamicznym rozwoju.
- Techniki te są niezastąpionym narzędziem w rękach współczesnych lekarzy
- Nie można określić granic ,możliwości' w tej dziedzinie.
- Co 'zobaczymy' za 10 lat ?

Główne źródła informacji dla NMR

- 1. B. Gonet; Obrazowanie magnetyczno-rezonansowe, PZWL, Warszawa 1997.
- 2. B. Ciesielski, W. Kuziemski; Obrazowanie metodą magnetycznego rezonansu w medycynie, TUTOR, Toruń 1994.
- 3. pusty
- 4. J. P. Hornak; www.cis.rit.edu/htbooks/mri/inside.htm
- 5. B. Roysam, www.ecse.rpi.edu/censsis/BioCourse/Lecture06-plain.ppl
- 6. pusty
- Diagnostic Radiology, <u>http://www.nd.edu/~nsl/Lectures/mphysics/Medical</u> <u>Physics/Part II. Physics of Diagnostic and Therapeutic Systems/Chapter</u> <u>8. Diagnostic Radiology/8.4 NMR imaging-MRI/NMR imaging-MRI.ppt</u>
- Keith Brown, http://www.nd.edu/~nsl/Lectures/mphysics/Medical Physics/Part II. Physics of Diagnostic and Therapeutic Systems/Chapter 8. Diagnostic Radiology/8.3 Physics of nuclear magnetic resonance (NMR)/Physics of nuc